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1 Introduction

The basis expansion technique[l, 2, 3, 4, 5] has been used for many years
to find approximate eigenmodes in bunched beam instability problems. In
general terms, one reduces the linearized Vlasov equation to an eigenvalue
problem in one spatial (7) and one momentum (v) variable,

)‘f(7_7 ’U) — Lop[f(7_7 U)] (1)

In equation (1) A is the eigenvalue, f(7,v) is its eigenfunction, and L, is
a linear integro-differential operator. For all but the simplest cases [6, 7,
8, 9] no exact solutions are known. The basis expansion technique involves
choosing a complete set of basis functions g,(7, v) and a weighting function
W (7, v) which satisfy an orthogonality relation

/g;;(T, V)G (T, v)W (T, v)drdv = 4. (2)

In equation (2) the integral is over the domain where W # 0, the * repre-
sents complex conjugate, the index n represents an enumeration of the basis
functions, and 4, is the Kronecker delta. To proceed one uses completeness
to write

f(Tv ?}) - § a‘mgm<7_v ’U), (3)

m=1
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where the a,,s are unknown coefficients.
One proceeds by multiplying equation (1) by ¢*(7,v)W (1, v)drdv and in-
tegrates to obtain

— § Tn,ma'ma (4)
m=1

where the matrix elements 7, ,,, depend on the basis chosen, the impedance,
etc. If L, is sufficiently well behaved the technique seems to be exact to this
point. In practical applications the infinite matrix equation is intractable,
the sum is truncated at some value N, and eigenmodes are obtained using
numerical techniques[3]. There is circumstantial evidence[9] that truncating
the sum can lead to grossly incorrect eigenvalues even for large V.

The purpose of this paper is to examine the expansion technique using a
very simple, exactly solvable model of bunched beam stability. The model
is quite naive, but seems to incorporate the fundamental elements of a
longitudinal instability calculation. It is found that one must be careful in
drawing conclusions from the basis expansion results.

2 Longitudinal instability model

The model assumes a waterbag distribution in a square well longitudinal
potential with an impedance Z = R — twL. The particles undergo perfect
reflection at the edges of the bunch which makes the rf restoring force a
boundary condition[8, 9, 10].

Let 6 denote machine azimuth, wy be the angular revolution frequency of
a synchronous particle, and 7 be arrival time relative to the head of the
bunch. Using 6 as the time-like variable the Vlasov equation away from the
reflective boundaries is,

——Ji—l-’lj—j-—-lm(]R L=—|=~ =0 (5)
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In equation (5): f = f(0,7,v), [ = I(7,0) =qfdvf(f,7,v), v = dr/de,
and
n

2rwo3*(Eo/q)’
with slip factor n. The synchronous particle’s energy, charge, and velocity
are Fy, q, and [c, respectively. For a waterbag distribution below the
wave-breaking threshold the solution to the Vlasov equation is of the form:

f0,7,v)= foH(ve(0,7) —v)H(v —v_(0.7))H(T)H (1, — 7)  (6)

where fj is a constant and H(z) is the heaviside function with

1, ifz>0;
H) ={,

Substituting equation (6) into (5) results in differential equations for v, and

(7)

otherwise.

v_,
a'U:{: a’U+
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Fz—h,(]R-l-L )
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The current is proportional to v, — v_ and the solution is exact to this
point. Next, neglect the effect of R in the unperturbed distribution setting

vy = 10 + dv(T) exp(—iQ0).
Setting dvi (1) + dv_(7) = D(7) yields a single equation for D with
d*D .dD

dr* dr’

Q’D = —0(d — 2V) (8)

where U — iV = —qrwy fo( R — iwgL). For perfect reflection at 7 = 0 and
= 7, the boundary conditions are D(0) = D(7) = 0. To solve (8) notice
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that
D(1) = exp(A+7) — exp(A-7).

Inserting this expression yields a quadratic equation for Ay,

v, g 02
(60— 2V (0 —2V)

M=o

The boundary condition at 7, gives Ay — A_ = 2mwik /7, with & # 0 an
integer. The eigenvalue satisfies

(9)

L2572 2 }

2=9(0—2V .
Qk ,U(,U ) 7_[;? + (/{) . 2v)2

and the eigenvector is

U
Di(1) = sin(k > . 10
k(1) = sin(knT /) exp (7'?} — 2V> (10)
The functions Dy, for £ = 1,2,... form a complete set on (0,7), so no

eigenmodes have been missed. The right hand side of (9) is positive as long

as v > 2V or
4oy
27TE0,62

Resistance alone cannot cause instability.

wol < 02,

While the reader may disagree with the physical behavior, the fact that
equations (9) and (10) represent the complete solution of (8) is inescapable.
In fact, everything before equation (8) may be viewed as purely motivational
without affecting the main results.



3 Testing basis expansions

Consider equation (8) with 0(6—2V) > 0. Let z = 77 /7, v* = Q77 [0 (6—
2V), and R = Ury/m(0 — 2V'). The equation becomes

D D Y i (11)
v'D = ——% —,
dz? dz

with boundary conditions D(0) = D(m) = 0. In these variables the exact
eigenvectors and eigenvalues are

Dy(z) = sin(kz)exp(Rz), (12)
vi = k*+ R% (13)

Let the expansion functions be g,(z) = sin(nz) with W = 2/ for 0 <
z < m. The eigenvalue in equation (4) is A = Q? and the matrix element is
8Rnm

Thm = nmo,, + — s—odd(n — m), (14)
| m(n® —m*

where odd(n —m) =1 if n — m is odd, and odd(n — m) = 0 otherwise. A
computer code was used to find solutions to

9 B N
Qan = 3 Tn,mama (15)
m=1

for various values of N and R. The only sophisticated part of the code is
the eigenvalue solver[11] which is a well tested standard routine. Figure 1
shows the values of Q) as a function R for N = 2 and predicts instability
for R 2 1. Setting N = 9 gives Figure 2. The lowest frequency mode in
Figure 2 is stable, this appears to be the case for all odd N. Also notice that
large values of () go unstable first. This also seems to be generic. Setting
R — —R has no effect on the eigenvalue spectrum, so crossing transition
is not an issue.



As the number of modes increases the threshold value of R for coupling
between the lowest order modes continues to increase. Figure 3 shows the
lowest 10 modes for N = 100. The expansion technique predicts that lowest
order modes go unstable for R < 5, while the exact solution proves that
the system is absolutely stable. Additionally, the threshold value of R for
the onset of unstable behavior without regard to mode varies only slightly
with N. The threshold values of R are 0.90, 0.95, and 0.95 for N = 2,
9, and 100, respectively. With basis expansions alone could one show that
equation (11) has no unstable solutions?
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Figure 1: Real and imaginary parts of () versus R for N = 2. The solid
lines are the real part of () and the distance between the points and solid

line is the imaginary part of ) for the unstable mode.
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Figure 2: Real and imaginary parts of @ versus R for N = 9. The solid
lines are the real part of (J and the distance between the points and solid

line is the imaginary part of ) for the unstable mode.
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Figure 3: Lowest 10 eigenvalues versus R for N = 100. The solid lines are
the real part of () and the distance between the points and solid line is the
imaginary part of () for the unstable mode.
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